Pengertian Peramalan
Peramalan (forecasting) merupakan bagian vital bagi setiap organisasi bisnis dan untuk setiap pengambilan keputusan manajemen yang sangat signifikan. Peramalan menjadi dasar bagi perencanaan jangka panjang perusahaan. Dalam area fungsional keuangan, peramalan memberikan dasar dalam menentukan anggaran dan pengendalian biaya. Pada bagian pemasaran, peramalan penjualan dibutuhkan untuk merencanakan produk baru, kompensasi tenaga penjual, dan beberapa keputusan penting lainnya. Selanjutnya, pada bagian produksi dan operasi menggunakan data-data peramalan untuk perencanaan kapasitas, fasilitas, produksi, penjadwalan, dan pengendalian persedian (inventory control). Untuk menetapkan kebijakan ekonomi seperti tingkat pertumbuhan ekonomi, tingkat pengangguran, tingkat inflasi, dan lain sebagainya dapat pula dilakukan dengan metode peramalan.
Peramalan adalah penggunaan data masa lalu dari sebuah variabel atau kumpulan variabel untuk mengestimasi nilainya di masa yang akan datang. Asumsi dasar dalam penerapan teknik-teknik peramalan adalah:“If we can predict what the future will be like we can modify our behaviour now to be in a better position, than we otherwise would have been, when the future arrives.” Artinya, jika kita dapat memprediksi apa yang terjadi di masa depan maka kita dapat mengubah kebiasaan kita saat ini menjadi lebih baik dan akan jauh lebih berbeda di masa yang akan datang. Hal ini disebabkan kinerja di masa lalu akan terus berulang setidaknya dalam masa mendatang yang relatif dekat.
Metode Peramalan
Metode peramalan dapat diklasifikasikan dalam dua kategori, yaitu:
1. Metode Kualitatif
Metode ini digunakan dimana tidak ada model matematik, biasanya dikarenakan data yang ada tidak cukup representatif untuk meramalkan masa yang akan datang (long term forecasting). Peramalan kualitatif menggunakan pertimbangan pendapat-pendapat para pakar yang ahli atau experd di bidangnya. Adapun kelebihan dari metode ini adalah biaya yang dikeluarkan sangat murah (tanpa data) dan cepat diperoleh. Sementara kekurangannya yaitu bersifat subyektif sehingga seringkali dikatakan kurang ilmiah.
Salah satu pendekatan peramalan dalam metode ini adalah Teknik Delphi, dimana menggabungkan dan merata-ratakan pendapat para pakar dalam suatu forum yang dibentuk untuk memberikan estimasi suatu hasil permasalahan di masa yang akan datang. Misalnya: berapa estimasi pelanggan yang dapat diperoleh dengan realisasi teknologi 3G.
2. Metode Kuantitatif
Penggunaan metode ini didasari ketersediaan data mentah disertai serangkaian kaidah matematis untuk meramalkan hasil di masa depan. Terdapat beberapa macam model peramalan yang tergolong metode kualitiatif, yaitu:
a) Model-model Regresi
Perluasan dari metode Regresi Linier dimalan meramalkan suatu variabel yang memiliki hubungan secra linier dengan variabel bebas yang diketahui atau diandalkan.
b) Model Ekonometrik
Menggunakan serangkaian persamaan-persamaan regresi dimana terdapat variabel-variabel tidak bebas yang menstimulasi segmen-segmen ekonomi seperti harga dan lainnya.
c) Model Time Series Analysis (Deret Waktu)
Memasang suatu garis trend yang representatif dengan data-data masa lalu (historis) berdasarkan kecenderungan datanya dan memproyeksikan data tersebut ke masa yang akan datang.
Prosedur Peramalan
Dalam melakukan peramalan terdiri dari beberapa tahapan khususnya jika menggunakan metode kuantitatif. Tahapan tersebut adalah:
1. Definisikan Tujuan Peramalan
Misalnya peramalan dapat digunakan selama masa pra-produksi untuk mengukur tingkat dari suatu permintaan.
2. Buatlah diagram pencar (Plot Data)
Misalnya memplot demand versus waktu, dimana demand sebagai ordinat (Y) dan waktu sebagai axis (X).
3. Memilih model peramalan yang tepat
Melihat dari kecenderungan data pada diagram pencar, maka dapat dipilih beberapa model peramalan yang diperkirakan dapat mewakili pola tersebut.
4. Lakukan Peramalan
5. Hitung kesalahan ramalan (forecast error)
Keakuratan suatu model peramalan bergantung pada seberapa dekat nilai hasil peramalan terhadap nilai data yang sebenarnya. Perbedaan atau selisih antara nilai aktual dan nilai ramalan disebut sebagai “kesalahan ramalan (forecast error)” atau deviasi yang dinyatakan dalam:
et = Y(t) – Y’(t)
Dimana : Y(t) = Nilai data aktual pada periode t
Y’(t) = Nilai hasil peramalan pada periode t
t = Periode peramalan
Maka diperoleh Jumlah Kuadrat Kesalahan Peramalan yang disingkat SSE (Sum of Squared Errors) dan Estimasi Standar Error (SEE – Standard Error Estimated)
SSE = S e(t)2 = S[Y(t)-Y’(t)]2
- Pilih Metode Peramalan dengan kesalahan yang terkecil.
Apabila nilai kesalahan tersebut tidak berbeda secara signifikan pada tingkat ketelitian tertentu (Uji statistik F), maka pilihlah secara sembarang metode-metode tersebut.
- Lakukan Verifikasi
Untuk mengevaluasi apakah pola data menggunakan metode peramalan tersebut sesuai dengan pola data sebenarnya.
Tidak ada komentar:
Posting Komentar